Mobili versija | Apie | Visos naujienos | RSS | Kontaktai | Paslaugos
 
Jūs esate čia: Pradžia » Visos temos » Technologijos » IT

Ekspertas apie NSA „Skynet“ programą: tai „visiškas šlamštas“, atsakingas už nekaltų žmonių žudymą

2016-03-21 (0) Rekomenduoja   (4) Perskaitymai (2345)
    Share

NSA „Skynet“ programa galėjo žudyti tūkstančius nekaltų žmonių. „Absurdiškai optimistinis“ mokytis gebančios mašinos algoritmas yra visiškas šlamštas, teigia ekspertas.

2014 metais tiek Centrinės žvalgybos valdybos (CŽV), tiek Nacionalinės saugumo agentūros (NSA) buvęs direktorius pareiškė, kad „mes, remdamiesi metaduomenimis, žudome žmones“. Dabar nauja anksčiau paskelbtų Edwardo Snowdeno dokumentų analizė rodo, kad daugelis šių žmonių galėjo būti nekalti, svetainėje arstechnica.co.uk rašo Christianas Grothoffas ir J. M. Porupas.

Praėjusiais metais svetainė „The Intercept“ paviešino dokumentus, detalizuojančius NSA programą „Skynet“. Anot šių dokumentų, „Skynet“ masiškai stebi Pakistano mobiliojo ryšio tinklus ir tuomet 55 mln. mobiliojo tinklo vartotojų metaduomenims pritaiko besimokančios mašinos algoritmą, kad įvertintų kiekvieno asmens tikimybę būti teroristu.

Duomenų mokslininkas ir „Human Rights Data Analysis Group“" tyrimų direktorius Patrickas Ballas, anksčiau liudijęs karo nusikaltimų tribunoluose, tokius NSA metodus pavadino „absurdiškai optimistiniais“ ir „visišku šlamštu“. Pasak P. Ballo, trūkumai, kurie būdingi tam, kaip NSA treniruoja „Skynet“ besimokančios mašinos algoritmą analizuoti mobiliuosius metaduomenis, paverčia jos rezultatus moksliškai nepagrįstais.

Nuo 2004 metų Pakistane bepiločių lėktuvų smūgiais buvo nužudyta nuo 2500 iki 4 000 žmonių.

Daugumą jų JAV vyriausybė priskyrė ekstremistams, rašė svetainė „The Bureau of Investigative Journalism“. Remiantis įslaptinimo data „20070108“, pasirodžiusia vienoje iš „Skynet“ skaidrių (kurios pačios buvo sukurtos 2011 ir 2012 metais), galima spręsti, kad besimokančios mašinos programa galėjo būti kuriama nuo 2007 metų.

Per vėlesnius metus „moksliškai nepagrįstas“ algoritmas teroristais galėjo pripažinti tūkstančius niekuo dėtų žmonių, kurie galėjo mirti pirma laiko.

Kerintys didieji duomenys

„Skynet“ veikia panašiai kaip tipiška šiuolaikinė didžiųjų duomenų apdorojimo verslo programa. Ji surenka metaduomenis ir saugo juos NSA debesų serveriuose. Tuomet ji atrenka svarbią informaciją ir pritaiko mašinos mokymosi gebėjimus, kad identifikuotų taikinius tikslinei kampanijai. Tačiau užuot bandžiusi taikiniams ką nors parduoti, ši kampanija veikiausiai pasitelkia kitą JAV vyriausybės atšaką – Centrinę žvalgybos valdybą ar kariuomenę, kurios įgyvendina „surasti, ištaisyti, užbaigti“ pobūdžio strategiją bepiločiais orlaiviais „Predator“ ir sausumos mirties būriais.

Be to, kad apdoroja mobiliųjų telefonų skambučių duomenis (vadinamus DNR – rinktų numerių atpažinimo duomenis, pavyzdžiui, laiką, trukmę, kas kam skambino ir pan.), „Skynet“ taip pat renka informaciją apie vartotojo buvimo vietą – tai leidžia kurti detalius kelionių profilius. Mobiliojo telefono išjungimas vertinamas kaip bandymas išvengti masinio sekimo ir programa tai pasižymi. Asmenys, kurie kaitalioja SIM korteles ir naiviai mano, kad tai apsaugos juos nuo sekimo, taip pat būna pažymimi (telefonuose esantys ESN/MEID/IMEI kodai leidžia sekti telefono aparatą net ir keičiant SIM korteles).

Programa pastebi ir pasižymi, net kai asmuo pakeičia patį telefono aparatą, teigiama skaidrėse. Galime tik spėlioti, kad užfiksuoti šį įvykį padeda tas faktas, kad kiti metaduomenys, pavyzdžiui, vartotojo buvimo vieta realiame pasaulyje ir socialinis tinklas, lieka nepakitę.

Turėdama visą metaduomenų rinkinį, „Skynet“ sudėlioja asmens kasdieninės veiklos paveikslą: kas su juo kartu keliauja, kas dalijosi kontaktais, kas liko per naktį su draugais, kas lankėsi kitose šalyse ar visam laikui persikėlė kitur. Skaidrėse teigiama, kad NSA mokytis gebančios mašinos algoritmas, vertindamas asmens teroristiškumą, naudoja daugiau kaip 80 skirtingų požymių.

Ši programa, pasak skaidrių, yra paremta prielaida, jog teroristų elgsena reikšmingai skiriasi nuo paprastų piliečių elgesio.

Tačiau, kaip parodė pernai „The Intercept“ paviešinta medžiaga, aukščiausiai įvertinas taikinys pagal šią mokytis gebančios mašinos programą buvo Ahmadas Zaidanas, ilgalaikis „Al Jazeera“ biuro Islamabade vadovas.

Kaip nurodė „The Intercept“, A. Zaidanas dažnai vyksta į regionus, garsėjančius teroristine veikla – ten jis ima interviu iš sukilėlių ir praneša naujienas. Tačiau užuot suabejoję mašinos mokymusi, kuris pateikė tokį keistą rezultatą, NSA inžinieriai savo prezentacijoje pateikė A. Zaidaną kaip „Skynet“ sėkmės pavyzdį ir vienoje skaidrėje netgi pavadino žurnalistą „Al Qaeda“ nariu“.

Mašinos maitinimas

Mokytis gebančios mašinos algoritmo treniravimas primena Bayeso brukalų filtro treniravimą: jis maitinamas žinomais brukalais ir žinomais ne brukalais. Iš šių „pamatinių tiesų“ algoritmas sužino, kaip teisingai filtruoti brukalus.

Tokiu pačiu būdu kritinė „Skynet“ programos dalis maitina mokytis gebančios mašinos algoritmą „žinomais teroristais“, kad išmokytų algoritmą pastebėti panašius profilius.

Problema ta, kad egzistuoja palyginus mažai „žinomų teroristų“, kurie maitintų algoritmą, o tikrieji teroristai vargu ar sutiktų dalyvauti hipotetiškoje NSA apklausoje šia tema.

Vidiniai NSA dokumentai rodo, kad „Skynet“ vietoj pamatinių tiesų naudoja grupę „žinomų kurjerių“ ir vadovaujasi prielaida, kad likę gyventojai yra nekalti.

Pakistane gyvena maždaug 192 mln. žmonių, kurie 2012 metų pabaigoje, kai buvo sukurtos „Skynet“ skaidrės, naudojo maždaug 120 mln. mobiliųjų telefonų. NSA išanalizavo 55 mln. šių mobiliųjų telefonų įrašų. Turint galvoje, kad 55 mln. Pakistano mobiliųjų telefonų vartotojų reikia pritaikyti 80 kintamųjų, tampa akivaizdu, kad duomenų yra pernelyg daug, kad juos būtų galima apdoroti rankiniu būdu. Taigi kaip ir bet kuri kita didžiųjų duomenų programa, NSA vietoj pagalbos – ar, galbūt, kaip pakaitalą – pasitelkė mokytis gebančią mašiną.

„Skynet“ klasifikavimo algoritmas analizuoja metaduomenis ir pamatines tiesas, o tuomet kiekvieną asmenį pagal jo metaduomenis įvertina tam tikru balu. Siekiama, kad tikrieji teroristai būtų įvertinti aukštais balais, o niekuo dėti gyventojai – žemais balais.

Kad tai padarytų, „Skynet“ algoritmas naudoja atsitiktinių miškų algoritmą, paprastai naudojamą tokio pobūdžio didžiųjų duomenų programoms. Kaip rodo praėjusią savaitę paviešinti E. Snowdeno dokumentai, Didžiosios Britanijos Vyriausybės ryšių štabas (GCHQ) taip pat naudoja panašius mokytis gebančių mašinų metodus.

„Atrodo, kad mašinų mokymuisi dažniausiai pasirenkami atsitiktinių sprendimų miškai“, – rašė Universitetinio koledžo Londone saugumo ir privatumo inžinerijos profesorius George`as Danezisas, viename tinklaraštyje analizavęs paviešintus dokumentus.

Atsitiktinio miško metodas iš atsitiktinių treniravimo duomenų poaibių sukuria sprendimų „medžių mišką“ ir tuomet juos kombinuoja, vesdamas prognozių vidurkius iš individualių medžių. „Skynet“ algoritmas ima 80 kiekvieno mobiliojo telefono vartotojo požymių ir priskiria jiems balą – kaip ir brukalų filtras.

Tuomet „Skynet“ pasirenka ribą, virš kurios mobiliojo telefono vartotojas jau įvardijamas „teroristu“. Skaidrėse pristatomi įvertinimo rezultatai, kai tokia riba tampa 50 proc. klaidingų neigiamų įvertinimų. Esant tokiam įvertinimui, pusė žmonių, kurie galėjo būti pripažinti „teroristais“, priskiriami nekaltiesiems – taip daroma tam, kad klaidingų teigiamų rezultatų – nekaltų asmenų, per klaidą pripažintų „teroristais“ – skaičius būtų kuo mažesnis.

Klaidingi teigiami rezultatai

Žinoma, negalime būti tikri, kad 50 proc. klaidingų neigiamų įvertinimų, pasirinktų minėtoms skaidrėms, buvo tas pats slenkstis, kuriuo buvo vadovaujamasi sudarant galutinį žudymo sąrašą. Nepaisant to, problema, ką daryti su nekaltais klaidingais „kaltaisiais“, išlieka.

1 | 2
Verta skaityti! Verta skaityti!
(13)
Neverta skaityti!
(9)
Reitingas
(4)
Komentarai (0)
Komentuoti gali tik registruoti vartotojai
Komentarų kol kas nėra. Pasidalinkite savo nuomone!
Naujausi įrašai

Įdomiausi

Paros
36(3)
28(0)
20(1)
14(0)
12(0)
11(0)
11(0)
10(0)
Savaitės
105(0)
84(1)
Mėnesio
149(2)
148(15)
146(3)
143(12)
138(22)